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We consider a simple model, the two-site small-polaron system, and show 
that its properties can be characterized by a master equation which is in 
accordance with recent quantum statistical theories of macroscopic ob- 
servables. It is shown by a combination of formal and numerical analyses 
that the model is an example of a system describable by the lowest-order term 
in the expansion of the kernel of the master equation in powers of the ratio 
of the average polaron-phonon interaction energy to the microscopic phonon 
energy. We discuss the relevance of the method to actual physical systems. 
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1. I N T R O D U C T I O N  

In  nonequ i l ib r ium stat is t ical  mechanics  an  i m p o r t a n t  p rob l e m is the descrip-  
t ion  o f  the t ime evolu t ion  o f  macroscop ic  var iables  in the  re turn  o f  a system 
to t h e r m o d y n a m i c  equi l ibr ium.  Van  K a m p e n  (1) and  Emch  (2) have given a 
phase-cel l  r epresen ta t ion  o f  the  observables  and  thei r  associa ted  macros ta tes ,  
and  have der ived mas te r  equat ions  for  the dynamica l  evolu t ion  o f  mac ro -  
scopic variables.  M a r k o v i a n  equat ions  were assumed by  van  K a m p e n ,  
whereas  Emch  has der ived an exact  general ized mas te r  equa t ion  for  the  
observables .  
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In an interesting combination of the beautiful operator methods of 
Zwanzig ~8~ and the methods of van Kampen and Emch, Sewell ~4,5~ has 
constructed a theory of irreversible processes in which criteria were set up 
for the reduction of a generalized master equation to a Markovian form. In 
this formulation an important role is played by a parameter which 
characterizes the relative magnitude of macroscopic to microscopic energies. 
The kernel of the integrodifferential master equation is expanded in a 
perturbation series in terms of the interaction Hamiltonian causing changes 
in the macrostate, and it is shown that, under certain assumptions on the 
observable, to lowest order in the expansion parameter the master equation 
becomes Markovian. 

The aim of this work is twofold. First, to give an example of a 
system to which the formalism referred to above can be applied and in 
which the applicability of a Markovian master equation can be explicitly 
demonstrated. The system is a version of the two-site model of Holstein ~6~ for 
small polarons, representing the motion of an electron with its polarization 
cloud in a polar semiconductor. Second, we intend to lay the statistical 
mechanical basis for a subsequent analysis of the dynamical properties of 
low-mobility materials. We note that a preliminary but unsatisfactory attempt 
in this direction has been made by Clark, (7~ who used similar methods in 
deriving the basic master equation. Here, however, we use a different 
dispersion relation which makes the steepest descent method applicable; 
and, moreover, we numerically analyze the Sewell master equation .to show 
the validity of Eq. (15) for a model based on recent data of Ref. 9. 

In the following section we describe the model. The master equation is 
described and analyzed in Section 3, where a consideration of its expansion in 
a size parameter leads to a simplified kinetic equation in an extremely good 
approximation. In Section 4 we discuss the application of the formalism to 
the description of the motion of low-mobility electrons. 

2. T H E  M O D E L  

The system to be described is supposed to represent the essential 
features of low-mobility electrons in materials with extremely strong electron- 
phonon coupling. The dynamical question of interest is the way in which the 
polaron, nemely the electron together with its induced polarization cloud, 
moves through the crsytal, and in particular, the effect of the fluctuating 
phonon field on the propagation of the polaron from a positive ion to its 
nearest neighbor. 

Here we shall describe the Hamiltonian used, and refer to the 
literature (~,8~ for its derivation and the justifications for its use on real 
systems. We consider an ionic crystal with positive and negative ions per 
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unit cell of mass M and M', respectively. Let Pqa, Q~a, and %a represent the 
lattice normal momenta, coordinates, and frequencies, respectively, of 
wave number q and polarization ~, and C~ + and C~ the polaron creation and 
absorption operators, respectively, in the localized tight-binding state 1. Then 
the Hamiltonian can be shown to be H = H0 + V, in which H0 is the 
harmonic lattice part, 

~(Pqa + ~ (1) 
qa 

and the term V represents the polaron-phonon interaction, which is weak: 

v = Z v < c ? c ~  (2) 

The quantity Vzz I pertains to the polaron-phonon interaction: Let r -- Rz) 
be the wave function of the electron at r centered around the ion at R , ,  
and let 

Aq~ '+ iAqa~ 

= y, (2/NMo)*/~ [exp(iq �9 R3][g VV(r - Rz) + (g  - 1) V V / ( r  - R f ) ] "  q 
g 

(3) 
Aqaa + iAqa4 

= Y, (2/NMa) 1/~ [exp(iq" R3][VV(r- Rz) + V V ' ( r - R / ) ]  - q 
l 

in which q = g/] # {, V and V' are the potentials due to positive and negative 
ions, and M~ = M + M', Mo = MM' /M; ,  and g = M'/M,~. Then 

= K;~)/%~] P~ (4) 
qa 

in which 

K~a : (r  -- R~)I Aqa l r -- Rz)} 

and J is taken to be a constant, rather than its actual value for nearest 
neighbors 

Jz,z+~ --~ <q~(r -- Ra) I Vz(r -- Rz) I 6( r -- Rz+a)) 

For the model, l and/1 in the above sum for V become just 1 and 2, so 
that the polaron propagates by means of the V term between two positive ions, 

v = vl=c,+c~ + v=,c=+c1 (s) 

It is now necessary to show how the features characteristic of this polaron 
model, especially the existence of several relaxation times of differing orders 
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of magnitude, can be incorporated into the general formalism of irreversible 
kinetic equations and specifically, to see how the structure of the latter is 
influenced by the relative magntitude of the different time scales and the 
scattering processes induced by the "perturbation" Hamiltonian V in Eq. (2). 

3. T H E  M A S T E R  E Q U A T I O N  

We are interested in a situation in which the number of polarons is 
much lower than the number of ions, so that one can sensibly talk about the 
probability that a single polaron will propagate from one cite to another, 
without interference from other polarons. 

The Hilbert space for the combined polaron-phonon system is spanned 
by the product of the set of functions {~,(r)} representing the polaron in a 
localized state around the ion l, and the set {0n}, which is the eigenfunction of 
the harmonic Hamiltonian H0, with photon occupation members n = {nqa}. 
The Hilbert space is divided into energy shells whose width is large compared 
to a typical phonon energy hoJ 0 , yet small on a macroscopic energy scale. 
The system is constrained to move on such an energy shell. The vector space 
of the system is divided into subspaces described by the vector R, ,  so that 
a subspace is associated with the lth unit cell of the crystal. Since the dipole 
operator of the system is readily shown to be 

rh = ~ (--eR~) C,+C~ (6) 
1 

where l is the electronic change, it is rh that may be said to divide the vector 
space into cells, according to its eigenvalues belonging to l. 

Let us now define a projection operator D~ corresponding to the cell L 
The operator Dz chooses from the linear combinations of wave functions of 
the system those that belong to the cell L For the latter we assume equal 
a priori probabilities and random initial phases. The statistical operator for 
the mixed state, corresponding to a measurement --eR, of the operator m, 
is given by 

1~ = DdTr D~ (7) 

The mean of any observable (_9 is 

((9)~ = Tr((9}~) (8) 

for the mixed state denoted by /)~. The Hamiltonian in (1) may thus be 
written in the form 

1 l i r  ~1, ls 
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where V has nonzero matrix elements between states of different cells, whereas 
the matrix elements of H0 are between states of the same cell. 

The probability P~ of finding the/ th  site occupied is given by the density 
matrix fi(t) of the system, 

Pz(t) = Trite(t)/)t] (10) 

A master equation for Pz(t) is readily derived (2,5) by first defining a coarse- 
graining projection operator .~ 

l 

partitioning the density matrix as 

/3(0 ---- ~/3(t) -k (1 -- ~)~(t) ,  ~2  = 

and using the Liouville operator ~ defined by 

s176 = ~o -k oCfa, ~o(~ = [H0, ~], ~(9  = [V, ~] (12) 

to calculate the time dependences. The equation of motion for Pz(t) then 
takes the form (with h = 1) 

dP,(t)/dt = fo' dt' ~ G,r(t ') Pr( t  -- t ') (13) 

in which we have used the U-matrix expansion in the interaction 
representation to define the kernels 

Gw(t) = G(~ ' ' ~ (-- i )  ~ dti i dt. G~)(t, t I tn) (14) ~ l ' t  ) T " ' "  ~ . , . ~  

The correlation functions GI~') are given by 

Gl~ = (1/Tr Dz,) Tr{[s 5e~/)r} (1 5) 

G}~)(t, tz ,..., t,) -~ (l/Tr D,,) Tr{[s162 - ~ )  ~a(q)(1 - ~ )  

• " "  ~q~(t.)(l - -  ~ )  ~ b r }  

Let us form an estimate of the various terms in the expansion (14) for 
the two-site model represented by (1) and (5). The projection operator for 
the / th  cell is C~+Ct. We shall consider first G (~ Substituting into (15), we 
find in the interaction representation 

G~~ = G~~ = (1/Tr/~0 Tr[/)lV~2(t) V2~l)z Jr- D2V~(t)  V21, 

G(O) ~(o) ~(o) (16) 
II = ~22 = - - ~ 1 2  



366 P. !'4. Clark, P. Gluck, and O.Wohlman-Entin 

In the thermodynamic limit we go over to the canonical ensemble from 
the microcanonical ensemble, for calculational convenience, since the two 
are equivalent. We make the assumption that the use of the zeroth-order 
Hamiltonian is a good approximation in the evaluation of the trace. Then 

G~)(t)  = (1/Tr e -t~H~ Tr{e-~U~ V2t + Vet(t) Vte]} 

(V l2 ( t )  V21 -]- Vez(t ) V12 ) (17) 

Hence to lowest order in s176 z the master equations for the probabilities Pt  and 
P~ at sites 1 and 2 are 

f~ 
dPl( t ) /d t  = J0 dt '  (Va~(t') Vet -~ Vel(t') VIe)[Pe(t - -  t ' )  - -  P t ( t  - -  t')] 

t 

dPe(t) /dt  = Jo dt '  <Vel(t') Vt2 + Vt~(t') V=t)[Pz(t - -  t ' )  - -  Pe(t - -  t')] 

We can combine and rearrange these to give for the difference in probabilities 
P = Pz -- Pe ,  

dP( t ) /d t  = - - 2  dt '  (V te ( t ' )  Vet ~- V~z(t') Vz~) P( t  - -  t ' )  (18) 

Before going on to analyze the rest of the terms in (15), let us first 
evaluate the correlation functions in (18). An explicit calculation of the 
average with the aid of (1) and (5) gives 

(Vie(t) Vet + Vet(t) Vie) 

= K o exp l ~  (Kq~-  K~a)~cos[wqa(t + �89 I (19) 
~a 2w~a sinh(/3o%ff2) + c.c. 

where c.c. means complex conjugate and where 

tr,-(t) r,-(e),~ _ ~ 1  K0 qa 2c~ coth (20) 

In contrast to the abstract operator theory up to now, let us go to the other 
extreme and consider the numerical values of the quantities that enter for 
typical materials such as NiO, CoO, etc39) It could be said, after all, that 
numbers are one of the desiderata in physics. 

We shall take the acoustic and optical 
respectively, 

frequency spectra to be, 

2 E sin~(�89 " S), ~ q a  = ~ 0  e t 

O~o O~o ~ ~ '  [ ( M d 2 M o )  2 - -  sin s (�89 G)] 
8 

(21) 
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where 3 denotes nearest neighbors and Z~' means sum over half of  these. Let 
us also define the quantity from (19), 

] ___ -~qa J coth cos c%at 
6O 3 2 an 

• cos t~qa - -  ,~qa s sin 6Oqat (22) 
O) 3 2 qa 

The time behavior of  this function is such that it has a maximum at t = 0. 
We determine its asymptotic behavior for large times by the steepest descent 
method. To do that we convert the q sums into integrals according to 

( l /N)  Z --+ (aZ/2~2) f"~/~ q dq, x 3 = 3fir 
q ~  

use expressions (20), (3), and (4) in the long-wave limit, and in addition 
substitute the Coulomb expressions for V and V' with the ionic charge Ze 
and the appropriate dielectric constant e. We obtain for t large the expression 

64e'Z2 V/~" I (7~-- 1)3/' [-~-q- 1)'/2] [ ~~ l)Z/2-J- -~-] a46oo8~2 Moy26o~12tZl ~ coth ( 7 2 -  cos - -  

-}- M~ (6oot) z/2 coth cos Coot q- , 7 = M~/2Mo (23) 

f/'2K o 

Fig. ] .  

. . . .  @/6 
- -  @/12 

5 lo Fb 

Decay of correlation 
function at different temperatures. 

822/7/4-6 
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Because of the factor t-l/2 the shape of the correlation function is oscillatory 
with diminishing amplitudes. It is readily verified that the funct ionf( t )  in (21) 
becomes unity for large t and that the major contribution to the correlation 
function is for times in the neigborhood of t = 0. 

To make this statement more tangible, we present a complete numerical 
(computer) evaluation of the correlation function, taking as input data, for 
the sake of experimental relevance, the parameters pertaining to NiO (taken 
from Ref. 9). Namely, we put M0 ~ 2 • 10 -23 g, Ma ~-~ 12.4 • 10 -~3 g, 
7 ~'~ 1.76, co 0 ~ 6 • 1013 sec -1, kBO D ~ 0.07 eV, a ~ 2.9 • 10 -8 cm, Z ~ 1, 
and e ~ 10. A check on these values is that they give the right binding energy 
of  the polaron (~0 .2  eV). Figure 1 shows f ( t ) /2K o versus wot for various 
temperatures. 

As the temperature increases, the maximum off/2Ko is seen to increase 
and the function itself tends to unity faster and faster, i.e., the relaxation 
time decreases rapidly with T. Already at 0D/6 we can write the correlation 
function as 

f ( t )  = 2//0 exp ~ a _  ~a-- ~qa ) coth fic%a 
2 qa 2 

2 ~ ~*-aa --oa~ ~ coth cos c%at ~a 2~%a a t%a 2oJaqa 

(24) 

This expression allows one to estimate the relaxation time, i.e., the interval 
over which the value 2K 0 is reached: 

a 2 "/-o2 qa ~qh 

i .e. ,  

1 
TCB(A)O g 

(8e2Z)2 I 1 ( ~ / a  sin 2 �89 (1 1 cos �89 
e2aacoo ~ -~o 0o dq (72 _ sin2 �89 -~ + 7 ~ -  ) 

• coth [ - ~  (72 --  sin~ ~ ) ]  

§ ~ Jo dq ~ ) ( 1  - - c o s  ~ff)coth sin ~ ) I  (25) 

Thus the relaxation time is of the order of a few z O , where, in the terminology 
of Ref. 1 and 5, z O ~ coo 1 is the characteristic time for the microscopic 
process of the lattice vibrations. 

With the foregoing properties of the correlation function we can now 
proceed to show that the master equation with the zeroth-order kernel is an 
excellent approximation for the two-site model. For  this we consider the 
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relative magnitudes of the time (and therefore energy) scales of the macro- 
scopic and microscopic processes. The former is the motion of  the polaron 
between lattice sites, with an appropriate relaxation time of ~-* ~ A-2T o 
(A to be defined presently) characterizing the lifetime of the macrostate, 
i.e., in which P~(t) remains reasonably constant. The latter process is the 
lattice vibration, with a corresponding relaxation time T 0 ~-~ COo z, pertaining 
roughly to the fluctuation frequency of the interionic potential. 

According to the general theory, ) = (Vzz)/~o o , the ratio of interaction 
energy to a microscopic quantum co 0 . In order to estimate )t, let us evaluate 
the interaction energy 

(V12)  = (V21)  = K1/2 

with Ko given in (20), With the same input data as in the above calculation 
we find that Ko has its maximum value 

K~ aax ~ JZe-Se-Z.6 

at T = 0~ where the two exponents are due, respectively, to the optical 
and acoustic lattice vibrations. The temperature behavior of Ko is as follows: 

Ko/J2: e -~.~2 e-a~.~s e-a2.~ e-aS.46 e-25.7~ 

T: 0D/12 00/6 0,/3 0D/2 0D 

Since the overlap integral J is of the order of ,-~10 -z eV, the quantity K0 is 
very small and vanishes at high temperatures. We thus see, from the definition 
of ~, that it is a suitable small parameter in the expansion of the master 
equation. Its value also makes the lifetime r*  of the macrostate much larger 
than COo ~, as required. 

Let us now return to the master equation (15). It is easily seen that all 
Gl~](t) with n odd vanish identically, because of the Fermi property of the 
projector D~ = C~+Cz. Consider now the first even term in the series. We 
find 

G~)(t ,  q ,  t2) = --2{([V12(tl) V21(t) + c.c.][V12(t2) V2a -k c.c.l) 

- -  (V l~ ( tO  V21(t) q- c.c)(Vxz(t~) V=z q- c.c.)] (26) 

~'J21 = = 'J22 

Thus to second order one obtains the master equation 

, ( dPa( t ) /d t  = - -  ~j. d t ' [P~( t  - -  t ' )  - -  P2(t  - -  t')] (V~2( t ' )  Vzz § c.c.) 

- -  <Vl2(t l )  g21(t '  ) -~- c.c.><V12(/2) V21 -@ c,c .>I  ] (27) 
J/ 
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One can calculate all the averages that come from G (2) in much the same way 
as in the method used to obtain (19). In fact the answer is similar, except 
that instead of the factor cos[c%a(t %- �89 which appears there in the 
exponent, one gets a number of such trigonometric terms: 

cos[c%~(t' %- �89 -- cos[c%a(q %- �89 %- cos[c%~(t2 %- �89 

%- COS[tOaa(t' - -  t 1%- � 8 9  - -  cos[ogqa(t~ -- t' + �89 

%- cos[oJqa(tz -- t2 + �89 (28) 

and instead of the preexponential term K0 there appears Ko ~. The important 
property of these functions in (28) is that the combination t%at , i.e., coot, 
appears. So let us change the variables of integration in (28) to 

t' ~ r'/oJ o , q -+ ri/OJo, t~ ~ r2/~o 

Then (27) becomes 

dPl(t)dt ~ -0 fta0~ dT' [PI ( t -  ~T~t0 ) -- e2(t--~-o)](Ko(V12(rt) V21%- c,c.~ 

2/(o 2 
f? '  d.rl f~l d~'~ l([Vl,(r  0 V~l(r')%- c.c.][V12(~'2) V21 + c.c.]~ (OO2 

-- (Vi2(rl) V21(r') + c.c.XV~2(r2) Vzl § c.c.)t) (29) 

where the V's have been redefined by taking out a factor of K~/2. Now let us 
use the fact that the probability P(t) refers to the lifetime of a macrostate, so 
that it changes on a time scale which is measured in units of T*, and let us 
introduce accordingly the reduced variables 

t = r*~, d/dt = (l/r*) d/d~r, P(t) = P(c 0 

Then using ~-* ----- A-z~ - and (26), we find for the master equation in (29) 

dPz(Cr)/act f~/a~ ( = -- dr' [pz(cr -- r'~ 2) -- p2(cr -- ~-'A2)] (V~2(r') V~z %- c.c.) 
~0 f~l d.rl 

- -  2A ~ drz (. dr2 ~0 
• {([Va2(rl) V21(r') %- c.c.][Va2(~'~) V2~ -{- c.c.]) 

V2~(r'))(V~z(~'~) Vz~ %- c.c.)}) (30) 

where the second term is of order A ~ and is negligible, according to the analysis 
of the two-site model presented above. 
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Going onto G (4) (etc.), one sees that it is a correlation of six (etc.) Vu 
and will be proportional to K03, so that its contribution to the right-hand 
side of  the master equation wilt be of o rder / t  a, and so forth. Let us now 
utilize the time-dependent properties of the correlation functions, discussed 
after Eq. (19). They show that the second term in (29) decays to zero provided 
the condition z ' - -~ '1,  ~'2 > ~'c is fulfilled, where z~ is the relaxation time 
obtained from (25), and when r l  and r '  are separated from ~-z by a time 
interval of order -r~. In this case the average of the product of four V~j becomes 
a product of two Vii ,  that is to say, the correlations are decoupled, and the 
term vanishes identically. Since ro is of  the order of several r 0 ~-~ c~  z so that it 
is much smaller than ~, and since the contributions from G (") will be 
multiplied by A s ~ 1, all terms higher than G (~ may be neglected, G(t) N G(o~, 

and the master equation has the extremely simple and manageable form of 
Eq. (18). 

4. C L O S I N G  REMARKS 

The preceding analysis has led to the setting up of a consistent statistical 
mechanical phase-cell description of the two-site model of small polarons, 
and can also be viewed as an easily analyzable specific model for which the 
general theory of van Kampen and Sewell may be numerically verified. It 
has led to a master equation for the site occupancy in which polaron and 
phonon operators are decoupled and showed what approximations this 
entails. It is now a logical and straightforward matter to use Eq. (18) to 
describe the time development of the dipole operator and via the fluctuation- 
dissipation theorem to discuss dielectric and transport properties. A numerical 
study of  these problems is in progress, with input parameters relevant to 
MnO, CoO, etc., and will be reported in the future. 
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